Optimization of Chemical Syntheses of Vitamin D C3-Epimers

LARS KATTNER and ERIK RAUCH

Endotherm Life Science Molecules, Saarbrücken, Germany

Reprinted from
ANTICANCER RESEARCH 36: 1417-1422 (2016)
Editorial Board

P. A. ABRAHAMSSON, Malmo, Sweden
B. B. AGGARWAL, Houston, TX, USA
T. AKIMOTO, Kashiwa, Chiba, Japan
P. Z. ANASTASIADIS, Jacksonville, FL, USA
A. ARGIRIS, San Antonio, TX, USA
J. P. ARMAND, Toulouse, France
V. L. AVRAMIS, Los Angeles, CA, USA
R. C. BAST, Houston, TX, USA
D.-T. BAU, Taichung, Taiwan, ROC
G. BAUER, Freiburg, Germany
E. E. BAUDELEUR, Le Kremlin-Bicêtre, France
E. J. BENZ, Jr., Boston, MA, USA
J. BERGH, Stockholm, Sweden
F. T. BOSMAN, Lausanne, Switzerland
G. BROICH, Monza, Italy
O. S. BRUHLAND, Oslo, Norway
J. M. BUATTI, Iowa City, IA, USA
M. M. BURGER, Basel, Switzerland
M. CARBONE, Honolulu, HI, USA
C. CARLBERG, Kuopio, Finland
J. CARLSSON, Uppsala, Sweden
A. F. CHAMBERLAIN, London, ON, Canada
P. CHANDRA, Frankfurt am Main, Germany
L. CHENG, Indianapolis, IN, USA
J.-G. CHUNG, Taichung, Taiwan, ROC
E. DE CLERCQ, Leuven, Belgium
W. DEN OTTER, Amsterdam, The Netherlands
E. P. DIAMANDIS, Toronto, ON, Canada
G. TH. DIAMANDOPOULOS, Boston, MA, USA
D. W. SELFERS, Stanford, CA, USA
J. A. FERNANDEZ-POR, Chesterfield, MO, USA
I. J. FIDLER, Houston, TX, USA
A. P. FIELDS, Jacksonville, FL, USA
B. FUCHS, Zurich, Switzerland
D. FUCHS, Innsbruck, Austria
G. GABBIANI, Geneva, Switzerland
R. GANAPATHI, Charlotte, NC, USA
A. F. GAZDAR, Dallas, TX, USA
J. H. GESCHWIND, Baltimore, MD, USA
A. GIORDANO,Philadelphia, PA, USA
G. GITSCHE, Freiburg, Germany
R. H. GOLDFARB, Guilford, CT, USA
L. HELSON, Quakertown, PA, USA
R. M. HOFFMAN, San Diego, CA, USA
S. C. JHANWAR, New York, NY, USA
V. J. JOHANNESSEN, Oslo, Norway
B. KAINA, Mainz, Germany
P.-L. KELLOKUMPU-LEHTINEN, Tampere, Finland
D. G. KIEBACK, Marl, Germany
R. KLPPODOR, Hamburg, Germany
S. D. KOTTARIDIS, Athens, Greece
G. R. F. KRUGER, Koln, Germany
Pat M. KUMAR, Manchester, UK
Shant KUMAR, Manchester, UK
O. D. LAERUM, Bergen, Norway
F. J. LEJEUNE, Lausanne, Switzerland
L. F. LIU, Piscataway, NJ, USA
D. M. LOPEZ, Miami, FL, USA
E. LUNDGREN, Umeå, Sweden
Y. MAEHARA, Fukusaka, Japan
J. MAHER, London, UK
J. MARESCAUX, Strasbourg, France
J. MARK, Skövde, Sweden
S. S. MARTIN, Baltimore, MD, USA
S. MITRA, Houston, TX, USA
S. MIYAMOTO, Fukusaka, Japan
M. MUELLER, Villingen-Schwenningen, Germany
F. M. MUGGIA, New York, NY, USA
M. NAMIKI, Kanazawa, Ishikawa, Japan
R. NARAYANAN, Boca Raton, FL, USA
K. NIELSSON, Uppsala, Sweden
S. PATHAK, Houston, TX, USA
J. L. PERSSON, Malmo, Sweden
G. J. PILKINGTON, Portsmouth, UK
C. D. PLATZSOUCAS, Norfolk, VA, USA
A. POLIACK, Jerusalem, Israel
M. RIGAUD, Limoges, France
U. RINGBORG, Stockholm, Sweden
M. ROSELLI, Rome, Italy
A. SCHAUER, Gottingen, Germany
M. SCHNEIDER, Wuppertal, Germany
A. SETH, Toronto, ON, Canada
G. V. SHERBERT, Newcastl upon-Tyne, UK
G.-I. SOKA, Kagawa, Japan
G. S. STEIN, Burlington, VT, USA
T. STIGBRAND, Umeå, Sweden
T. M. THEOPHANIDES, Athens, Greece
P. M. UELAND, Bergen, Norway
H. VAN VLIERBERGHE, Ghent, Belgium
R. G. VILE, Rochester, MN, USA
M. WELLER, Zurich, Switzerland
B. WESTERMARCK, Uppsala, Sweden
Y. YEN, Duarte, CA, USA
M.R.I. young, Charleston, SC, USA
B. ZUMOFF, New York, NY, USA
J. G. DELINASIOS, Athens, Greece
G. J. DELINASIOS, Athens, Greece
G. J. DELINASIOS, Athens, Greece
E. ILIADIS, Athens, Greece

Anticancer Research International Journal of Cancer Research and Treatment

ISSN (print): 0250-7005
ISSN (online): 1791-7530

Editorial Office: International Institute of Anticancer Research, 1st km Kapandritiou-Kalamou Rd., Kapandriti, Attiki 19014, Greece. Tel/Fax: +30-22950-53389.

U.S. Branch: Anticancer Research USA, Inc., 111 Bay Avenue, Highlands, NJ 07732, USA.

E-mails: Editorial Office: journals@iiar-anticancer.org
Managing Editor: editor@iiar-anticancer.org

Anticancer Research supports: (a) the establishment and the activities of the INTERNATIONAL INSTITUTE OF ANTICANCER RESEARCH (IIAR; Kapandriti, Attiki, Greece); and (b) the organization of the International Conferences of Anticancer Research. The IIAR is a member of UICC. For more information about Anticancer Research, IIAR and the Conferences, please visit the IIAR website: www.iiar-anticancer.org.

Publication Data: Anticancer Research (AR) is published monthly from January 2009. Each annual volume comprises 12 issues. Annual Author and Subject Indices are included in the last issue of each volume. Anticancer Research Vol. 24 (2004) and onwards appears online with Stanford University HighWire Press from April 2009.

Copyright: On publication of a manuscript in AR, which is a copyrighted publication, the legal ownership of all published parts of the paper passes from the Author(s) to the Journal.

Annual Subscription Rates 2016 per volume: Institutional subscription US$ 1,698.00 (online) or US$ 2,277.00 (print & online). Personal subscription US$ 897.00 (online) or US$ 1,277.00 (print & online). Prices include rapid delivery and insurance. The complete previous volumes of Anticancer Research (Vol. 1-35, 1981-2015) are available at 50% discount on the above rates.

Subscription Orders: Orders can be placed at agencies, bookstores, or directly with the Publisher. E-mail: subscriptions@iiar-anticancer.org.

Advertising: All correspondence and rate requests should be addressed to the Editorial Office.

Book Reviews: Recently published books and journals should be sent to the Editorial Office. Reviews will be published within 2-4 months. Articles in Anticancer Research are regularly indexed in all bibliographic services, including Current Contents (Life Sciences), Science Citation Index, Index Medicus, Biological Abstracts, PubMed, Chemical Abstracts, Excerpta Medica, University of Sheffield Biomedical Information Service, Current Clinical Cancer, AIDS Abstracts, Elsevier Bibliographic Database, EMBASE, Compendex, Geobase, EMBiology, Elsevier BIOBASE, Flibidex, World Textiles, Scopus, Progress in Palliative Care, Cambridge Scientific Abstracts, Cancergram (International Cancer Research Data Bank), MEDLINE, Reference Update - IRS Inc., PASCAL-CNRs, Inpharma- Reactions (Datasync, BRS), CABS, Immunology Abstracts, Telegen Abstracts, Genetics Abstracts, Nutrition Research Newsletter, Dairy Science Abstracts, Current Titles in Dentistry, Inpharma Woody, BioBase, MedBase, CAB Abstracts/Global Health Databases, Investigational Drugs Database, VINITI Abstracts Journal, Leeds Medical Information, PubHub, Sociedad Iberoamericana de Información Científica (SIBIC) Data Bases. Authorization to photocopy items for internal or personal use, or the internal or personal clients, is granted by Anticancer Research, provided that the base fee of $2.00 per copy, plus 0.40 per page is paid directly to the Copyright Clearance Center, 22 Congress Street, Salem, MA 01970, USA. For those organizations that have been granted a photocopy license by CCC, a separate system of payment has been arranged. The fee code for users of the Transactional Reporting Service is 0250-7005/2016 $2.00 +.40. The Editors and Publishers of Anticancer Research accept no responsibility for the opinions expressed by the contributors or for the content of advertisements appearing therein.
Optimization of Chemical Syntheses of Vitamin D C3-Epimers

LARS KATTNER and ERIK RAUCH

Endotherm Life Science Molecules, Saarbrücken, Germany

Abstract. Due to the widespread impact of vitamin D on human health, the development of appropriate assays to detect deficiency of all vitamin D metabolites of pharmacological interest is being continuously improved. Although over 50 naturally-occurring metabolites of vitamin D are known to date, only very few are routinely detected in commercially available assays. This is particularly true regarding C3-epimers of vitamin D3 and D2, which not only may interfere in analytical measurements with other metabolites of interest, but also have controversial and not yet fully understood physiological functions. In this study we optimized a synthetic method to obtain various vitamin D3 and D2 C3-epimers in order to make them available in gram quantities for further evaluation and for their use in assay development or drug discovery. Particularly, the inversion of the C3-OH group at the A-ring of vitamin D2, which, in turn, serves as a suitable starting material for most of chemical syntheses of vitamin D metabolites, can be converted to the corresponding C3-epimer under so-called "Mitsunobu conditions". Thus, the C3-OH group is converted into the corresponding ester by treatment with an aromatic acid, subsequent addition of an azodicarboxlate and triphenylphoshine, leading to the corresponding ester, concomitant to the inversion of the stereogenic center at C3. Reduction or saponification of the resulting ester finally leads to the corresponding C3-epimer, that may serve as starting material for a wide variety of vitamin D3 and D2 C3-epimers.

Due to the widespread impact of vitamin D on human health, the development of appropriate assays to measure the status of vitamin D metabolites in human serum/plasma or relevant tissue is continuously being improved, mainly with the aim to detect and thus prevent vitamin D deficiency, that is considered to cause a wide variety of diseases, including cancer of the breast, colon and pancreas (1-3). Additionally, vitamin D metabolites may serve as starting points for the development of novel therapeutic rationales (4-6). Although over 50 natural metabolites of vitamin D are known to date (7, 8), only very few are routinely measured in commercially available assays (9-13), thus neglecting the impact of most other metabolites of potential relevance (14-16). Regarding its metabolism, vitamin D3 (1) (Figure 1), generated mainly by UV irradiation of 7-dehydrocholesterol in the skin, is hydroxylated in the liver to 25-hydroxyvitamin D3 (2), which is subsequently hydroxylated in the kidney to 1α,25-dihydroxyvitamin D3 (3, calcitriol), in turn apparently the medicinally most relevant metabolite. 2 is metabolized to other oxidative products, such as 24(R),25-dihydroxyvitamin D3 (4), mediated by the enzyme CYP24, followed by subsequent enzymatic degradation of the carbon side chain. 3 is degraded analogously in a parallel metabolism pathway. Additionally, presumably all vitamin D metabolites can be metabolized separately through a C3 epimerization pathway, leading to C3-epi-metabolites such as 5-7 with an inversion of the stereogenic center at position C3 of the respective molecule (17-22). Additionally, the corresponding metabolites of vitamin D2 (8) have to be recognized, because food from plant origin and food supplements may contain vitamin D2, and its metabolites are considered to have similar physiological functions comparing to their corresponding vitamin D3 counterparts (23), although the metabolism products slightly vary due to an additional methyl group at C24 and a double bond at C22-23 (8), and their potency seems apparently lower. Interestingly, C3-epi-dihydroxyvitamin D2 has been identified along with elevated concentrations of C3-epi-hydroxyvitamin D3 in serum of young children (22, 24). Consequently, all naturally-occurring C3-epimers of vitamin D3 and D2 deserve attention, because some of them may not only interfere in analytical measurements with other metabolites of interest, but also have controversial and not yet fully understood physiological functions. Thus, a flexible approach towards the chemical synthesis of all relevant vitamin D C3 epimers is highly desirable in order to make them available in sufficient quantities for their evaluation.

Correspondence to: Lars Kattner, Endotherm Life Science Molecules, Science Park 2, 66123 Saarbrücken, Germany.

Key Words: Cancer prevention, vitamin D metabolites, epimers, assay development, stereoselective synthesis.
Materials and Methods

Most routine assays, particularly RIA and ELISA, are competitive assays, where the metabolite of interest competes with a corresponding labeled metabolite for binding to assay specific antibodies or DBF. Although these techniques are suitable for automated high-throughput analysis of samples, they are often restricted to measure only one metabolite, i.e., 25-hydroxyvitamin D₃ suffering from cross-reactivity (low specificity) and lacking sensitivity. For instance, the presence of 3-epi-25-hydroxyvitamin D₃ in the sample may either not be detected at all, or lead to overestimated concentrations of 25-hydroxyvitamin D₃. Low-abundant metabolites are widely neglected. By contrast, mass spectrometry, particularly liquid chromatography-tandem mass spectrometry (LC-MS/MS), which is currently considered the “gold standard”, allows measurement of various metabolites, including C3-epimers and other low-abundant metabolites, in one sample at the same time with high accuracy (11-16). Usually, chemically synthesized stable metabolites, in turn labeled with isotopes (2H or 13C) are used as internal standards for this purpose. However, advanced LC equipment and material is needed for accurate separation of all relevant metabolites.

In this study we explored several synthetic methods to invert the configuration of the stereogenic center at C3 of the intact vitamin D skeleton with the aim to apply the most efficient method to the synthesis of various vitamin D₃ and D₂ C₃-epimers (Table I).

It has already been explored previously, that readily-available vitamin D₂ (8) is a most suitable starting material for the chemical synthesis of many vitamin D metabolites of interest (6, 7, 25) (Figure 2). The inversion of the configuration of the C3-OH group (from β to α) at the A-ring of vitamin D, leading to the corresponding C3-epimer, can be accomplished most appropriately under so-called “Mitsunobu conditions” (26). Thus, vitamin D₂ or a related derivative thereof is treated with an aromatic acid, an azodicarboxylate and triphenylphosphine, leading to formation of a corresponding ester, concomitant to the inversion of the configuration of the stereogenic center at C3. Reduction or saponification of the resulting ester finally leads to the corresponding C3-epimer, which may serve as starting material for a wide variety of other vitamin D₃ and D₂ C₃-epimers.

Two alternative strategies can be applied, either by leaving the vitamin D skeleton intact and proceed with 9 in the synthesis, or by conversion of 8 to bishydroxylated 10, followed by inversion of C3 configuration leading to 11, cleavage of the molecule in an A-ring 12 and CD ring 13, appropriate chemical modification of these both building blocks.
Figure 1. Metabolic pathways of vitamin D.
and connection of the A-ring as a phosphine oxide 14 with an appropriate CD-ring ketone 15.

Results and Discussion

The results of exploration of various starting materials, reagents and reaction conditions towards the synthesis of C3-epi-vitamin D derivatives are shown in Table I.

Vitamin D2 (8), vitamin D3 (1), and 7,8-bishydroxylated vitamin D2 (10) served as starting material. Different acids (benzoic acid, 3-chlorobenzoic acid, 4-nitrobenzoic acid, 2-picolinic acid), various azodicarboxylates, such as diethyl- and diisopropyl-azodicarboxylate (DEAD, DIAD), as well as different solvents were employed. Additionally, reaction time and temperature were optimized.

Reaction of Vitamin D2 (8) with benzoic acid, 3-chlorobenzoic acid and 4-nitrobenzoic acid (Table I, entries 1-3) gave just moderate yields (18%-33%) of the corresponding esters, mainly due to elimination reaction, leading to a presumably favored product containing a conjugated 3,4,5,6,7,8-all-trans-triene system. Although, cleavage of the esters by reduction with lithium aluminium hydride (Table I, entries 1-2) or saponification with potassium hydroxide (Table I, entry 3) could be carried out in reasonable yields (48%-88%). The most suitable acid for ester formation was picolinic acid, which gave the corresponding ester of vitamin D3 (1) as a starting material in 47% yield (Table I, entry 4). In order to avoid the formation of a triene system by elimination in the course of esterification, 7,8-bishydroxylated vitamin D2 (10) was employed as a starting material for the reaction with picolinic acid (27). Indeed, the corresponding ester could be obtained in good yield (64%) (Table I, entry 5). The cleavage of the ester with copper(II) acetate was optimized to yield 64% of the corresponding alcohol 11. It has to be recognized that these conditions are quite mild, making them suitable for highly sensitive substrates. This approach is favored to proceed in a connective synthesis using building blocks 12-15 (Figure 2). By contrast, the use of vitamin D2 (8) as a starting material, 4-nitro benzoic acid for esterification, and saponification with potassium hydroxide for ester cleavage appeared as most suitable for practical reasons to
obtain C3-epi derivatives to proceed in a non-connective synthesis via 9, leaving the vitamin skeleton intact.

Conclusion

Inversion of the configuration at the C3 stereogenic center of vitamin D$_2$ or another appropriate vitamin D derivative under “Mitsunobu conditions” was optimized and can finally be carried out in gram scale, leading to products suitable for the synthesis of a wide variety of natural 3-epi vitamin D metabolites and analogs. Measurement of these low-abundant metabolites, favorably by LC-MS/MS, and thus assessment of their distribution in human blood or relevant tissue may open up a new avenue for physicians and clinicians for diagnosis, treatment and risk prediction of vitamin D-dependent diseases.

Acknowledgements

This work was generously supported by the Ministry of Economics and Science of the Saarland, and Roche Diagnostics GmbH (Penzberg, Germany).

References

Received January 11, 2016
Revised February 12, 2016
Accepted February 15, 2016
Instructions for Authors 2016

General Policy. ANTICANCER RESEARCH (AR) will accept original high quality works and reviews on all aspects of experimental and clinical cancer research. The Editorial Policy suggests that priority will be given to papers advancing the understanding of cancer causation, and to papers applying the results of basic research to cancer diagnosis, prognosis, and therapy. AR will also accept the following for publication: (a) Abstracts and Proceedings of scientific meetings on cancer, following consideration and approval by the Editorial Board; (b) Announcements of meetings related to cancer research; (c) Short reviews (of approximately 120 words) and announcements of newly received books and journals related to cancer, and (d) Announcements of awards and prizes.

The principal aim of AR is to provide prompt publication (print and online) for original works of high quality, generally within 1-2 months from final acceptance. Manuscripts will be accepted on the understanding that they report original unpublished works in the field of cancer research that are not under consideration for publication by another journal, and that they will not be published again in the same form. All authors should sign a submission letter confirming the approval of their article contents. All material submitted to AR will be subject to review, when appropriate, by two members of the Editorial Board and by one suitable outside referee. The Editors reserve the right to improve manuscripts on grammar and style.

The Editors and Publishers of AR accept no responsibility for the contents and opinions expressed by the contributors. Authors should warrant due diligence in the creation and issuance of their work.

NIH Open Access Policy. The journal acknowledges that authors of NIH funded research retain the right to provide a copy of the final manuscript to the NIH four months after publication in ANTICANCER RESEARCH, for public archiving in PubMed Central.

Copyright. Once a manuscript has been published in ANTICANCER RESEARCH, which is a copyrighted publication, the legal ownership of all published parts of the paper has been transferred from the Author(s) to the journal. Material published in the journal may not be reproduced or published elsewhere without the written consent of the Managing Editor or Publisher.

Format. Two types of papers may be submitted: (i) Full papers containing completed original work, and (ii) review articles concerning fields of recognisable progress. Papers should contain all essential data in order to make the presentation clear. Reasonable economy should be exercised with respect to the number of tables and illustrations used. Papers should be written in clear, concise English. Spelling should follow that given in the “Shorter Oxford English Dictionary”.

Manuscripts. Submitted manuscripts should not exceed fourteen (14) pages (approximately 250 words per double - spaced typed page), including abstract, text, tables, figures, and references (corresponding to 4 printed pages). Papers exceeding four printed pages will be subject to excess page charges. All manuscripts should be divided into the following sections:

(a) First page including the title of the presented work [not exceeding fifteen (15) words], full names and full postal addresses of all Authors, name of the Author to whom proofs are to be sent, key words, an abbreviated running title, an indication “review”, “clinical”, “epidemiological”, or “experimental” study, and the date of submission. (Note: The order of the Authors is not necessarily indicative of their contribution to the work. Authors may note their individual contribution(s) in the appropriate section(s) of the presented work); (b) Abstract not exceeding 150 words, organized according to the following headings: Background/Aim - Materials and Methods/Patients and Methods - Results - Conclusion; (c) Introduction; (d) Materials and Methods/Patients and Methods; (e) Results; (f) Discussion; (g) Acknowledgements; (h) References. All pages must be numbered consecutively. Footnotes should be avoided. Review articles may follow a different style according to the subject matter and the Author's opinion. Review articles should not exceed 35 pages (approximately 250 words per double-spaced typed page) including all tables, figures, and references.

Figures. All figures should appear at the end of the submitted document file. Once a manuscript is accepted all figures and graphs should be submitted separately in either jpg, tiff or pdf format and at a minimum resolution of 300 dpi. Graphs must be submitted as pictures made from drawings and must not require any artwork, typesetting, or size modifications. Symbols, numbering and lettering should be clearly legible. The number and top of each figure must be indicated. Pages that include color figures are subject to color charges.

Tables. All tables should appear at the end of the submitted document file. Once a manuscript is accepted, each table should be submitted separately, typed double-spaced. Tables should be numbered with Roman numerals and should include a short title.

Clinical Trials. Authors of manuscripts describing clinical trials should provide the appropriate clinical trial number in the correct format in the text.

For International Standard Randomised Controlled Trials (ISRCTN) Registry (a not-for-profit organization whose registry is administered by Current Controlled Trials Ltd.) the unique number must be provided in this format: ISRCTNXXXXXXXX (where XXXXXXXX represents the unique number, always prefixed by “ISRCTN”). Please note that there is no space between the prefix “ISRCTN” and the number. Example: ISRCTN47956475.

For Clinicaltrials.gov registered trials, the unique number must be provided in this format: NCTXXXXXXXX (where XXXXXXXX represents the unique number, always prefixed by 'NCT'). Please note that there is no space between the prefix 'NCT' and the number. Example: NCT00001789.

Ethical Policies and Standards. ANTICANCER RESEARCH agrees with and follows the "Uniform Requirements for Manuscripts Submitted to Biomedical Journals" established by the International Committee of Medical Journal Editors in 1978 and updated in October 2001 (www.icmje.org). Microarray data analysis should comply with the "Minimum Information About Microarray Experiments (MIAME) standard". Specific guidelines are provided at the "Microarray Gene Expression Data Society" (MGED) website. Presentation of genome sequences should follow the guidelines of the NHGRI Policy on Release of Human Genomic Sequence Data. Research involving human beings must adhere to the principles of the Declaration of Helsinki and Title 45, U.S. Code of Federal Regulations, Part 46, Protection of Human Subjects, effective December 13, 2001. Research involving animals must adhere to the Guiding Principles in the Care and Use of Animals approved by the Council of the American Physiological Society. The use of animals in biomedical research should be under the careful supervision of a person adequately trained in this field and the animals must be treated humanely at all times. Research involving the use of human foetuses, foetal tissue, embryos and embryonic cells should adhere to the U.S. Public Law 103-41, effective December 13, 2001.

Submission of Manuscripts. Please follow the Instructions for Authors regarding the format of your manuscript and references. Manuscripts must be submitted only through our online submission system at: http://www.iiar-submissions.com/login.html

In case a submission is incomplete, the corresponding Author will be notified accordingly.

Questions regarding difficulties in using the online submission system should be addressed to: email: journals@iiar-anticancer.org

Galley Proofs. Unless otherwise indicated, galley proofs will be sent to the corresponding Author of the submission. Corrections of galley proofs should be limited to typographical errors. Reprints, PDF files, and/or Open Access may be ordered after the acceptance of the paper. Authors of online open access articles published in 2015 are entitled to a complimentary online subscription to Anticancer Research 2015. Requests should be addressed to the Editorial Office. Galley proofs should be returned corrected to the Editorial Office by email within two days.

Copyright© 2016 - International Institute of Anticancer Research (J.G. Delinasios). All rights reserved (including those of translation into other languages). No part of this journal may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher.

Specific information and additional instructions for Authors

1. Anticancer Research (AR) closely follows the new developments in all fields of experimental and clinical cancer research by (a) inviting reviews on topics of immediate importance and substantial progress in the last three years, and (b) providing the highest priority for rapid publication to manuscripts presenting original results judged to be of exceptional value. Theoretical papers will only be considered and accepted if they bear a significant impact or formulate existing knowledge for the benefit of research progress.

2. Anticancer Research will consider the publication of conference proceedings and/or abstracts provided that the material submitted fulfils the quality requirements and instructions of the journal, following the regular review process by two suitable referees. (For further information please click here)

3. An acknowledgement of receipt, including the article number, title and date of receipt is sent to the corresponding author of each manuscript upon receipt. If this receipt is not received within 20 days from submission, the author should call or write to the Editorial Office to ensure that the manuscript (or the receipt) was not lost in the mail or during electronic submission.
4. Each manuscript submitted to AR is sent for review in confidence to two suitable referees with the request to return the manuscript with their comments to the Editorial Office within 12 days from receipt. If reviewers need a longer time or wish to send the manuscript to another expert, the manuscript may be returned to the Editorial Office with a delay. All manuscripts submitted to AR, are treated in confidence, without access to any person other than the Managing Editor, the journal's secretary, the reviewers and the printers.

5. All accepted manuscripts are peer-reviewed and carefully corrected in style and language, if necessary, to make presentation clear. (There is no fee for this service). Every effort is made (a) to maintain the personal style of the author's writing and (b) to avoid change of meaning. Authors will be requested to examine carefully manuscripts which have undergone language correction at the pre-proof or proof stage.

6. Authors should pay attention to the following points when writing an article for AR:
 • The Instructions to Authors must be followed in every detail.
 • The presentation of the experimental methods should be clear and complete in every detail facilitating reproducibility by other scientists.
 • The presentation of results should be simple and straightforward in style. Results and discussion should not be combined into one section, unless the paper is short.
 • Results given in figures should not be repeated in tables.
 • Figures (graphs or photographs) should be prepared at a width of 8 or 17 cm with legible numbers and lettering.
 • Photographs should be clear with high contrast, presenting the actual observation described in the legend and in the text. Each legend should provide a complete description, being self-explanatory, including technique of preparation, information about the specimen and magnification.
 • Statistical analysis should be elaborated wherever it is necessary. Simplification of presentation by giving only numerical or % values should be avoided.
 • Fidelity of the techniques and reproducibility of the results, should be points of particular importance in the discussion section. Authors are advised to check the correctness of their methods and results carefully before writing an article. Probable or dubious explanations should be avoided.
 • Authors should not cite results submitted for publication in the reference section. Such results may be described briefly in the text with a note in parenthesis (submitted for publication by... authors, year).
 • The References section should provide as complete a coverage of the literature as possible including all the relevant works published up to the time of submission.
 • By following these instructions, Authors will facilitate a more rapid review and processing of their manuscripts and will provide the readers with concise and useful papers.

7. Following review and acceptance, a manuscript is examined in language and style, and galley proofs are rapidly prepared. Second proofs are not sent unless required.

8. Authors should correct their galley proofs very carefully and preferably twice. An additional correction by a colleague always proves to be useful. Particular attention should be paid to chemical formulas, mathematical equations, symbols, medical nomenclature etc. Any system of correction marks can be used in a clear manner, preferably with a red pen. Additions or clarifications are allowed provided that they improve the presentation but do not bring new results (no fee).

9. Articles submitted to AR may be rejected without review if:
 • they do not fall within the journal's policy.
 • they do not follow the instructions to authors.
 • language is unclear.
 • results are not sufficient to support a final conclusion.
 • results are not objectively based on valid experiments.
 • they repeat results already published by the same or other authors before the submission to AR.
 • plagiarism is detected by plagiarism screening services.

10. Authors who wish to prepare a review should contact the Managing Editor of the journal in order to get confirmation of interest in the particular topic of the review. The expression of interest by the Managing Editor does not necessarily imply acceptance of the review by the journal.

11. Authors may inquire information about the status of their manuscript(s) by calling the Editorial Office at +30-22950-53389, Monday to Friday 9.00-16.00 (Athens time), or by sending an e-mail to journals@iiar-anticancer.org

12. Authors who wish to edit a special issue on a particular topic should contact the Managing Editor.

13. Authors, Editors and Publishers of books are welcome to submit their books for immediate review in AR. There is no fee for this service.

(This text is a combination of advice and suggestions contributed by Editors, Authors, Readers and the Managing Editor of AR).

Copyright © 2016 IIAR (J.G. Delinasios)